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Together with attractive couplings, repulsive couplings play crucial roles in determining important evolu-
tions in natural systems, such as in learning and oscillatory processes of neural networks. The complex
interactions between them have great influence on the systems. A detailed understanding of the dynamical
properties under this type of couplings is of practical significance. In this paper, we propose a model to
investigate the dynamics of attractive and repulsive couplings, which give rise to rich phenomena, especially
for amplitude death (AD). The relationship among various dynamics and possible transitions to AD are
illustrated. When the system is in the maximally stable AD, we observe the transient behavior of in-phase (high

frequency) and out-of-phase (low frequency) motions. The mechanism behind the phenomenon is given.
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I. INTRODUCTION

Since the latter half of 20th century, coupled nonlinear
dynamical systems arise in many branches of physical, bio-
logical, chemical, and social sciences and have been exten-
sively studied [1-3]. Recent researches have explored the
effect of coupling in nonlinear systems, which can cause rich
phenomena such as complete synchronization, partial syn-
chronization, antiphase synchronization (AS), and so on
[4-7]. Among the collective behaviors, amplitude death
(AD), which refers to a situation where the coupled oscilla-
tors drive each other off their cycles and into an equilibrium
solution, was first reported in 1984 [8] and has attracted lots
of attentions [9-12].

In chemical and biochemical systems attractive (positive)
couplings exist extensively in the normal diffusion processes,
while repulsive (negative) couplings appear much less exten-
sive. However, repulsive couplings do exist, and together
with attractive couplings repulsive couplings play crucial
roles in determining important evolutions in natural systems
[13-20]. For example, Ref. [13] studies a pair of neurons in
presence of coexistence of excitatory (attractive) and inhibi-
tory (repulsive) synaptic couplings. Qu et al. [16] investigate
the nonlinear dynamics of excitation-contraction (EC) cou-
pling in cardiac myocytes. In Ref. [17], the authors use a
chain of coupled chaotic oscillators with negative feedback
and delay modeling the experimental laser system, while in
[18] the authors analyze the strong energetic interactions of
the alkali metal with coadsorbates in chemical surface reac-
tion, i.e., the attractive interaction with coadsorbed oxygen
and the effectively repulsive interaction with coadsorbed ni-
trogen.
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In this study, we develop a model of chaotic systems with
two couplings to investigate the dynamics of attractive and
repulsive couplings, depending on whether the couplings are
both negative, both positive and opposite in sign. The system
displays not only chaotic complete synchronization (CS) but
also periodic antiphase synchronization (PAS), antisynchro-
nous AD, and so on. The relationship of different dynamics
and transition process to AD are considered. In addition, a
distinctive phenomenon is observed that when the system is
in the maximally stable AD, namely, the largest Lyaponov
exponent is local minimum, the phase difference between the
subsystems oscillating into AD changes from being in-phase
to being out-of-phase, and their common frequency under-
goes a sharp jump. This phenomenon has also been observed
in time-delay-coupled nonlinear systems [ 11,12]. Further, the
reason of phase difference change is analyzed, which is an
open problem in their papers.

II. MODEL AND DYNAMICS

In order to investigate the effect of attractive and repul-
sive couplings, we consider the following model of two iden-
tical Lorenz systems [differentiated by subscript 1 or 2, i.e.,
Ulz(xl V1 »Zl) and U2=(X2,y2,Z2)]Z

X =aly —x) + & (g -x),
Yi=px; =y =Xz + &y =y,
Z1=x1y1— Bz,

K= alyy —x) +&(x) - x,),

V2= pXy = Yo = Xo2p + &2(y1 = ¥2)
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FIG. 1. (Color) Schematic phase diagram for Eq. (1) in the
(e,€,) plane. The white region, the upper gray region, the nether
dark yellow region, and the two magenta deltoid regions correspond
to C, CS, AS, and AD, respectively, while in AS the portion covered
with blue dots corresponds to PAS and the rest corresponds to CAS.
The coexistence regions of AD and CS (AS) are indicated by the
arrows.

2= Xy, — P22, (1)

which are symmetrically coupled through x; and x,, y,, and
v,. The coupling parameters €; and &, are treated as vari-
ables. In the absence of coupling, the subsystems are in the
chaotic state when the parameters a=10, p=28, and B=1
[21].

Make €, as x axis and &, as y axis. For finite coupling
strength various dynamics are observed. We can obtain four
quadrants based on different values of the coupling param-
eters €; and &,, which can be positive or negative, respec-
tively. The two-dimensional phase space can be observed
instead of a line given a coupling parameter which has been
deeply investigated theoretically and experimentally. For
each pair of coupling parameter (g,,¢,), the dynamics of the
system is indicated in the schematic Fig. 1 within a represen-
tative range of coupling parameters &; and &,. The system
behaves three primary features: desynchronized chaos (C),
CS, and AS, where AS contains PAS, chaotic AS (CAS) and
antisynchronous AD. In Fig. 1, the white region corresponds
to C. The upper gray region corresponds to CS and here the
subsystems are in synchronous chaos. The region, which is
shade dark yellow, corresponds to AS embedded with some
periodic state windows (PAS) (marked with blue dots). In the
two magenta deltoid regions on the left and right respectively
the system undergoes AD state. Some special regions, i.e.,
bistability regions of AD and other dynamics, are marked
out, a detailed analysis of which is in Secs. III and IV. Tra-
jectories of oscillator 1 (solid black line) and oscillator 2
(dashed red line) at (e;,8,)=(0.5,2), (g,,8,)=(0.5,-2),
(e1,8,)=(0.5,-5) and (g,,&,)=(~4,2) are shown in Figs.
2(a)-2(d), respectively. In Fig. 2(a) the two trajectories over-
lap since they are in CS. CAS and PAS are shown in Figs.
2(b) and 2(c), respectively. The common frequency of PAS is
relatively faster. In Fig. 2(d), amplitude death occurs. The
two subsystems settle onto one of two complete reversed
values at random, since they are symmetrical coupled iden-
tical oscillators.
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FIG. 2. (Color online) Time series of x; (solid black line) and x,
(dashed red line) (a) of CS with (g;,&,)=(0.5,2), (b) of CAS with
(e1,8,)=(0.5,-2), (c) of PAS with (g,,8,)=(0.5,~5), and (d) of
AD with (g,8,)=(-4,2).

In the first (third) quadrant of Fig. 1 both &, and &, are
positive (negative) and we observe in-phase (antiphase) syn-
chronization for sufficiently large coupling intensities, and
these results are reasonably predictable. Interestingly, the be-
haviors of the second quadrant (positive &, and negative &)
is slightly different from that of the fourth quadrant (positive
£, and negative &,). Actually, variables x and y are asymmet-
ric in Lorenz system, so the two corresponding couplings (g,
and &,) are not symmetric, and they have different influences
on the synchronization behavior. We can see from Fig. 1 that
the coupling of y (e,) itself is sufficient to achieve in-phase
synchronization (approximately at £,> 1) and antiphase syn-
chronization (approximately at £, <<—1) in the absence of the
coupling of x (g;=0). On the other hand, the influence of x
coupling (&) itself is rather weak. Only with large coupling
intensity the system can achieve in-phase synchronization
(approximately at £,>4) and antiphase synchronization (an-
tisynchronous AD here) (approximately at &;<-4) in the
absence of the coupling of y (g,=0). Therefore, in Eq. (1) &,
primarily determines in-phase and antiphase synchroniza-
tion, while &; influences other rich behaviors such as ampli-
tude death, bistabilities, desynchronous chaos, and so on.

III. COEXISTENCE OF CS AND AD PHENOMENON

In Fig. 1, we can see some special regions, where CS and
antisynchronous AD coexist. To affirm it, the stability analy-
ses are presented to determine the parameter range for AD
and CS states, respectively. First we consider the stable re-
gion of fixed points for Eq. (1). Apart from the fixed point at
the origin (0, 0, 0, 0, 0, 0), there are several sets of fixed
points for the system, but only the reversed pair (x],y},z],
—x},-y7,2]) is possible to be stable, given by

xj= % VaBpl(a+2e,) - B(1 +2&,),
yi= = (1+2&/a)x],

* %k
1 =x01/Bs

where &, and &, are treated as variables.
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FIG. 3. (Color online) (a) The diagram of the stable region of
the antisynchronous fixed point for Eq. (1) (painted magenta) in the
£1—&, plane. (b) The diagram of the stable region of CS (painted
magenta) in the &;—g, plane. (c) The overlapped diagram of (a) and
(b). The two dark magenta regions marked CO are the regions of
bistability. (d) The attraction basins for two attractors at (g,&,)
=(—4.4,10). The black areas denote the initial values leading to CS,
and the white areas denote the initial values leading to AD. The x
axis presents the initial values of x; and the y axis presents that of
X,. We fix the initial values of yy, y,, zy, and z, are equal to zero.

The eigenvalue matrix H is in the form

—a—g o 0 £ 0 0

p—z; —-l-& -x] 0 & 0

P I T Y A 0 0
g 0 0 -a-¢g a 0

0 &, 0 p—2z, —l-& —-x5

0 o 0 y xu -

Using MATLAB we can easily obtain the eigenvalues of the
fixed point during different parameters. If and only if the
largest real part of eigenvalues is negative, the fixed point is
stable, which corresponds to AD; otherwise the fixed point is
unstable. The stable region (painted magenta) of the fixed
point is shown in Fig. 3(a) in the &,—&, plane. Here, AD is
born via a Hopf bifurcation because a pair of conjugate com-
plex eigenvalues of the fixed point cross the imaginary axis
of the complex plane from right to left, or say that the real
parts become negative and the pair of imaginary parts are
nonzero. And then we compute the conditional Lyapunov
exponents for the system on the synchronous manifold M,
where M={(U,,U,):U;=U,}. Similarly, CS is stable if and
only if the largest conditional Lyapunov exponent is nega-
tive. In Fig. 3(b), we present the stability boundary, which
separates the stable region (painted magenta) of CS from the
unstable region (painted white). Seen from the overlapped
diagram shown in Fig. 3(c), the bistable regions where CS
and AD coexist are obtained analytically, which coincide
with the numerical result. In the bistable regions, the attrac-
tion basins for two attractors are shown in Fig. 3(d).
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FIG. 4. (Color) (a) The spectrum of the three largest Lyapunov
exponents (black solid, red dashed, and green dotted lines corre-
sponding to \j, N, and A3, respectively) with &, at fixed g;=—4.2.
From AD(A;=X\,<0) to CS(\;>0,\,=0) there is a bistable re-
gion (say from &,=7.36 to £,=8.16). From PAS(\;=0,\,<0) to
AD the system undergoes five transition stages (boxed). (b) The
enlarged view of the boxed region in (a). 1, the coexisting state of
CAS(\{>0,\,=0) and AD. 2, the CAS state. 3, the coexisting
state of CAS and QP(\;=\,=0). 4, the QP state. 5, the chaotic state
(N >0,1,>0).

IV. INSTABILITY PROCESS OF AD

Based on the results above, as a function of &,, during the
transition from AD to CS the system definitely undergoes
either bistable region or chaotic region, in that AD is anti-
synchronous in this case. The three largest Lyapunov expo-
nents as a function of &, at fixed £, =—4.2 are shown in Fig.
4(a), denoted by \;, N\, and \; respectively. From
£,=—-0.22 to £,=8.16, the system is in AD(\;=\,<0), in
which we can see a local minimum at &,,=0.25. Between
&,=7.36 and &,=8.16, the wild fluctuations of the Lyapunov
exponent correspond to bistable region where CS(A\;>0,\,
=0) and AD coexist. The dynamics during the road from AD
to PAS(\;=0,\,<<0) is relatively rich, which can be seen
through the enlarged diagram of Lyapunov exponents [see
Fig. 4(b)]. It is interesting to find out that the system under-
goes five transition stages as follows: (1) the coexisting state
of CAS(\;>0,\,=0) and AD, (2) the CAS state, (3) the
coexisting state of CAS and quasiperiodicity (A;=X\,=0)
(QP), (4) the QP state, and (5) the chaotic state (\;>0,\,
>0), where these stages do not always appear together at
other values of €.

Though the shapes of AD domains in the second quadrant
and the fourth quadrant are rather different, the AD behaviors
found in both quadrants are basically the same. From Fig. 1,
it is evident that there is bistability region of AD and AS in
the fourth quadrant; moreover, there is also bistability region
between AD and CS in the fourth quadrant.

V. ANALYSIS ON THE PHASE DIFFERENCE CHANGE

Before and after the minimum of \; (g,,=0.25), the tran-
sient trajectories of the two subsystems going into complete
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FIG. 5. (Color online) Time series of x; (solid black) and x,
(dotted red) going into AD, (a) at e,=0 (out of phase) and (b) at
£,=0.5 (in phase), at fixed £, =—4.2. The values are accurate to the
eighth place after decimal point. The four smaller graphs in (a) and
(b) enlarge the time series from =40 to r=42.5. (c) The average
phase difference (A6) between subsystems as a function of &,.
(d) Numerically calculated average common frequency (@) with &,.

AD are shown in Fig. 5(a) for £,=0 and (b) for £,=0.5 at
fixed £,=—4.2, respectively. A dramatic change can be seen
in two aspects (compare the smaller graphs inside): phase
difference between the two subsystems (A6) which is de-
fined as A0=(|0,— 6,]) where (-) denotes the average over
time while 6,=tan”'[(y;—y;)/(x;—x})] and common fre-
quency (@) which is measured from peak-to-peak separation
and averaged over time [11,22]. At &,=0 the phase differ-
ence is 7 (out of phase), while at £,=0.5 the phase differ-
ence is zero (in-phase). The phase difference (A6) is shown
as a function of &, in Fig. 5(c). This clearly suggests the
transition of the phase difference from 7 to zero across the
change parameter (&,,=0.25). The common frequency (@) is
shown as a function of &, in Fig. 5(d). The step-like change
corresponds to the jump of common frequency of the system.

Similar phenomenon in phase difference and common fre-
quency was first observed in time-delay-coupled chaotic os-
cillators in Ref. [11]. The author gave out the reason of fre-
quency jump via time-delay-coupled limit cycles system,
that is due to a jump in the imaginary part of the eigenvalue
of the fixed point. Following [11], the transient behaviors
were further explored in Ref. [12]. The authors explained
that the phase difference can be either zero or 7 across the
change parameter. However the reason leading to phase dif-
ference change remains to be settled.

In order to understand the underlying mechanism, we first
review all the eigenvalues of the fixed point for Eq. (1)
nearby &,,=0.25. It is well known that the behaviors of the
fixed point are influenced by all the eigenvalues jointly, in
which the relatively large eigenvalues play the dominant
roles. Here, the magnitude of eigenvalues is determined by
comparing the magnitude of their real parts. The front four
largest eigenvalues appear in way of two pairs of conjugate
complex eigenvalues. The real parts of eigenvalues are
shown in Fig. 6(a) along with &, at fixed e, =—4.2. The red
and blue lines correspond to real parts of a pair of conjugate
complex eigenvalues, denoted by Re,; and Re,,, respec-
tively, where Re, =Re,, for conjugate. The green and black
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FIG. 6. (Color) (a) The real parts of the four largest eigenvalues
along with &, at fixed £y=—4.2. Red and blue lines correspond to
the real parts of a pair of conjugate complex eigenvalues, respec-
tively, denoted by Re,; and Re,,. Green and black lines correspond
to the real parts of another pair, respectively, denoted by Re;; and
Re;,. The largest real part Re; is shown by circles. The cross point
of the two pairs of real parts are indicated by the vertical arrow, at
£,,=0.25, where Re; has a local minimum. (b) The imaginary parts
corresponding to the real parts in (a) (the other two imaginary parts
omitted owing to symmetry). Red and green lines correspond to
Im,; and Im;;, respectively. The vertical arrow shows the parameter
value, &,,=0.25, where Im; undergoes a sharp jump.

lines correspond to real parts of another pair, denoted by Re;;
and Rej,, respectively, where Re; =Re;. In Fig. 6(b), the
imaginary parts corresponding to Re,; and Re;; are shown,
denoted by Im,; (red line) and Im;, (green line), respectively.
Because of the symmetry of conjugate complex eigenvalues
in their imaginary parts, we just need to display two positive
imaginary parts. In addition, the largest real part (Re;) and
the corresponding imaginary part (Im;) of the eigenvalues
are shown by circles in Figs. 6(a) and 6(b), respectively. It is
surprising to find that the two pairs of real parts cross each
other at &,,=0.25 [see Fig. 6(a)]. Via the cross, the former
smaller pair of real parts exceed the former largest pair and
become the largest real parts that means the eigenvalues of
the most significant influence on the behavior of fixed point
before the cross are replaced by another pair of eigenvalues
and the characteristics of the fixed point will change. The
switch of the largest real part leads to the corresponding
switch of the largest imaginary part. This cross not only ex-
plain why the slope of A; has a local minimum but also
explain why the imaginary part of the eigenvalue (Im;) un-
dergoes a sharp jump, which is just the cause of frequency
jump. For purpose of proving the function of the cross that
leads to the phase difference change, we make a further in-
vestigation on the eigenvectors. The eigenvectors corre-
sponding to the eigenvalue Re, +iIm,; and Re; +iIm;
separately can be written as
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FIG. 7. (Color) (a) The real parts of the five largest eigenvalues
which contain a real eigenvalue and two pairs of conjugate complex
eigenvalues along with &, at fixed £,=—4.8 (red, blue, green, black,
and magenta lines corresponding to Re,;, Re,», Re,, Re;1, and Re;»,
respectively). The boxed region of the curves is enlarged and shown
in (b). There are two types of crosses as labeled, which are type
one: between real root and complex roots and type two: between
two pairs of complex roots. Only the cross of type two can lead to
phase difference change.
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where c,, d,;, ¢;; and d;; are complex numbers and r,; and
r;; are real numbers. As expected, in V,q, the sign of com-
plex element pairs are opposite, while in V;;, the sign of
complex element pairs are same. So it is the possible reason
for the phase difference transition that a cross in the real
parts of two pairs of conjugate complex eigenvalues for the
fixed point. Furthermore, in our system the feature of being
out-of-phase below ¢&,.=0.25 and being in-phase above
£,.=0.25 can be visually displayed from the phase diagram
(see Fig. 1), i.e., below &, the system is apt to AS, above &,,
is CS.

Now it is significant to make a discussion on the case of
real eigenvalue occurring cross. At an altered fixed parameter
g1=—4.8, we consider the front five largest eigenvalues com-
posed of a real eigenvalue and two pairs of conjugate com-
plex eigenvalues. Their real parts are shown in Fig. 7(a) as a
function of &,. The boxed region of the curves is amplified
[see Fig. 7(b)]. We see three crosses, which can be divided
into two types: type one (the real parts of a pair of complex
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eigenvalues cross with that of another pair of complex eigen-
values) and type two (the real parts of a pair of complex
eigenvalues cross with that of real eigenvalue). The cross
occurring at &,~=~0.02 belongs to type one, and the crosses
occurring at &,=~0 and &,=4.68, respectively, belong to type
two. Calculating the phase difference around &,~4.68 (type
two), there is no transition of in and out of phase motions. It
means that a real eigenvalue crossing with a pair of complex
eigenvalues will not result in phase difference change.

VI. CONCLUSION

In summary, we have studied the impacts of the interac-
tion between attractive and repulsive couplings on dynamics,
which is a meaningful research topic. In cardiac myocyte, the
interactions of EC coupling give rise to rich dynamics, in
which rapid heart rates may cause lethal arrhythmias. “Re-
cent evidence indicates that dynamics properties of cardiac
EC coupling contribute importantly to functional magnifica-
tion of tissue heterogeneities promoting arrhythmogenesis”
[16]. In this paper, we refer &, and &, as attractive and re-
pulsive couplings, respectively. Under this interactions, the
coupled chaotic systems mainly displays CS and AS, while
the latter appears as CAS, PAS, and AD. At the point of
maximum stability in AD we observe the phenomena of
phase difference change and frequency jump, previously pro-
posed in coupled chaotic oscillators with time delay [11,12].
We focus on the unsolved issue of the cause for the phase
difference change and get a reasonable conclusion that is due
to a cross in the real parts of two pairs of conjugate complex
eigenvalues. It has certain practical significance to know
when the motion goes from being in-phase to being out-of-
phase and the common frequency gets fast sharply [23].

The presence and importance of attractive and repulsive
couplings are well acknowledged not only in biological sys-
tems, such as neurons [13-15], cardiac myocyte [16], but
also in other experimental applications, such as laser system
[17], chemical reaction [18] and so on. Our study provides
potentially useful mechanistic insights to the attractive and
repulsive coupling dynamics. We will continue studying the
effect of positive and negative feedbacks on large complex
networks.
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